Symmetry classes of spanning trees of Aztec diamonds and perfect matchings of odd squares with a unit hole

نویسنده

  • Mihai Ciucu
چکیده

We say that two graphs are similar if their adjacency matrices are similar matrices. We show that the square grid Gn of order n is similar to the disjoint union of two copies of the quartered Aztec diamond QADn−1 of order n− 1 with the path P (2) n on n vertices having edge weights equal to 2. Our proof is based on an explicit change of basis in the vector space on which the adjacency matrix acts. The arguments verifying that this change of basis works are combinatorial. It follows in particular that the characteristic polynomials of the above graphs satisfy the equality P(Gn)= P(P (2) n )[P(QADn−1)]2. On the one hand, this provides a combinatorial explanation for the “squarishness” of the characteristic polynomial of the square grid—i.e., that it is a perfect square, up to a factor of relatively small degree. On the other hand, as formulas for the characteristic polynomials of the path and the square grid are well known, our equality determines the characteristic polynomial of the quartered Aztec diamond. In turn, the latter allows computing the number of spanning trees of quartered Aztec diamonds. We present and analyze three more families of graphs that share the above described “linear squarishness” property of square grids: odd Aztec diamonds, mixed Aztec diamonds, and Aztec pillowcases—graphs obtained from two copies of an Aztec diamond by identifying the corresponding vertices on their convex hulls. We apply the above results to enumerate all the symmetry classes of spanning trees of the even Aztec diamonds, and all the symmetry classes not involving rotations of the spanning trees of odd and mixed Aztec diamonds. We also enumerate all but the base case of the symmetry classes of perfect matchings of odd square grids with the central vertex removed. In addition, we obtain a product formula for the number of spanning trees of Aztec pillowcases. Research supported in part by NSF grant DMS-0500616. M. Ciucu ( ) Department of Mathematics, Indiana University, Bloomington, IN 47405, USA e-mail: [email protected] 494 J Algebr Comb (2008) 27: 493–538

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-centrosymmetric matrices, with applications to counting perfect matchings

We consider square matrices A that commute with a fixed square matrix K, both with entries in a field F not of characteristic 2. When K2 = I, Tao and Yasuda defined A to be generalized centrosymmetric with respect to K. When K2 = −I, we define A to be pseudo-centrosymmetric with respect to K; we show that the determinant of every even-order pseudo-centrosymmetric matrix is the sum of two square...

متن کامل

Higher Dimensional Aztec Diamonds and a (2d + 2)-Vertex Model

Motivated by the close relationship between the number of perfect matchings of the Aztec diamond graph introduced in [5] and the free energy of the square-ice model, we consider a higher dimensional analog of this phenomenon. For d ≥ 2, we construct d-uniform hypergraphs which generalize the Aztec diamonds and we consider a companion d-dimensional statistical model (called the 2d +2-vertex mode...

متن کامل

Fe b 20 04 Perfect Matchings and The Octahedron Recurrence

We study a recurrence defined on a three dimensional lattice and prove that its values are Laurent polynomials in the initial conditions with all coefficients equal to one. This recurrence was studied by Propp and by Fomin and Zelivinsky. Fomin and Zelivinsky were able to prove Laurentness and conjectured that the coefficients were 1. Our proof establishes a bijection between the terms of the L...

متن کامل

4 Perfect Matchings and The Octahedron Recurrence

We study a recurrence defined on a three dimensional lattice and prove that its values are Laurent polynomials in the initial conditions with all coefficients equal to one. This recurrence was studied by Propp and by Fomin and Zelivinsky. Fomin and Zelivinsky were able to prove Laurentness and conjectured that the coefficients were 1. Our proof establishes a bijection between the terms of the L...

متن کامل

Aztec Diamonds, Checkerboard Graphs, and Spanning Trees

This note derives the characteristic polynomial of a graph that represents nonjump moves in a generalized game of checkers. The number of spanning trees is also determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008